Where as an extrinsic semiconductor is an improved intrinsic semiconductor with a small amount of impurities added by a process, known as doping, which alters the electrical properties of the semiconductor and improves its conductivity. Introducing impurities into the semiconductor materials (doping process) can control their conductivity.
Doping process produces two groups of semiconductors: the negative charge conductor (n-type) and the positive charge conductor (p-type). Semiconductors are available as either elements or compounds. Silicon and Germanium are the most common elemental semiconductors. Compound Semiconductors include InSb, InAs, GaP, GaSb, GaAs, SiC, GaN. Si and Ge both have a crystalline structure called the diamond lattice. That is, each atom has its four nearest neighbors at the corners of a regular tetrahedron with the atom itself being at the center. In addition to the pure element semiconductors, many alloys and compounds are semiconductors. The advantage of compound semiconductor is that they provide the device engineer with a wide range of energy gaps and mobilities, so that materials are available with properties that meet specific requirements. Some of these semiconductors are therefore called wide band gap semiconductors.
No comments:
Post a Comment